Viral proteinase requirements for the nucleocytoplasmic relocalization of cellular splicing factor SRp20 during picornavirus infections.

نویسندگان

  • Kerry D Fitzgerald
  • Amanda J Chase
  • Andrea L Cathcart
  • Genevieve P Tran
  • Bert L Semler
چکیده

Infection of mammalian cells by picornaviruses results in the nucleocytoplasmic redistribution of certain host cell proteins. These viruses interfere with import-export pathways, allowing for the cytoplasmic accumulation of nuclear proteins that are then available to function in viral processes. We recently described the cytoplasmic relocalization of cellular splicing factor SRp20 during poliovirus infection. SRp20 is an important internal ribosome entry site (IRES) trans-acting factor (ITAF) for poliovirus IRES-mediated translation; however, it is not known whether other picornaviruses utilize SRp20 as an ITAF and direct its cytoplasmic relocalization. Also, the mechanism by which poliovirus directs the accumulation of SRp20 in the cytoplasm of the infected cell is currently unknown. Work described in this report demonstrated that infection by another picornavirus (coxsackievirus B3) causes SRp20 to relocalize from the nucleus to the cytoplasm of HeLa cells, similar to poliovirus infection; however, SRp20 is relocalized to a somewhat lesser extent in the cytoplasm of HeLa cells during infection by yet another picornavirus (human rhinovirus 16). We show that expression of poliovirus 2A proteinase is sufficient to cause the nucleocytoplasmic redistribution of SRp20. Following expression of poliovirus 2A proteinase in HeLa cells, we detect cleavage of specific nuclear pore proteins known to be cleaved during poliovirus infection. We also find that expression of human rhinovirus 16 2A proteinase alone can cause efficient cytoplasmic relocalization of SRp20, despite the lower levels of SRp20 relocalization observed during rhinovirus infection compared to poliovirus. Taken together, these results further define the mechanism of SRp20 cellular redistribution during picornavirus infections, and they provide additional insight into some of the differences observed between human rhinovirus and other enterovirus infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous Nuclear Ribonucleoprotein M Facilitates Enterovirus Infection.

UNLABELLED Picornavirus infection involves a dynamic interplay of host and viral protein interactions that modulates cellular processes to facilitate virus infection and evade host antiviral defenses. Here, using a proteomics-based approach known as TAILS to identify protease-generated neo-N-terminal peptides, we identify a novel target of the poliovirus 3C proteinase, the heterogeneous nuclear...

متن کامل

Control of the papillomavirus early-to-late switch by differentially expressed SRp20.

The viral early-to-late switch of papillomavirus infection is tightly linked to keratinocyte differentiation and is mediated in part by alternative mRNA splicing. Here, we report that SRp20, a cellular splicing factor, controls the early-to-late switch via interactions with A/C-rich RNA elements. An A/C-rich SE4 element regulates the selection of a bovine papillomavirus type 1 (BPV-1) late-spec...

متن کامل

Picornavirus Modification of a Host mRNA Decay Protein

UNLABELLED Due to the limited coding capacity of picornavirus genomic RNAs, host RNA binding proteins play essential roles during viral translation and RNA replication. Here we describe experiments suggesting that AUF1, a host RNA binding protein involved in mRNA decay, plays a role in the infectious cycle of picornaviruses such as poliovirus and human rhinovirus. We observed cleavage of AUF1 d...

متن کامل

Human papillomavirus regulation of SR proteins.

Splicing is a cellular process essential for mRNA biogenesis. There are two types of splicing: constitutive and alternative splicing. During constitutive splicing, non-coding intron sequences are removed and exonic coding sequences are spliced together to form mature mRNAs. Alternative splicing can maximize the coding capacity of the genome by specific alternative selection of exons from multi-...

متن کامل

Epstein–Barr virus protein EB2 stimulates cytoplasmic mRNA accumulation by counteracting the deleterious effects of SRp20 on viral mRNAs

The Epstein-Barr Virus (EBV) protein EB2 (also called Mta, SM and BMLF1), is an essential nuclear protein produced during the replicative cycle of EBV. EB2 is required for the efficient cytoplasmic accumulation of viral mRNAs derived from intronless genes. EB2 is an RNA-binding protein whose expression has been shown to influence RNA stability, splicing, nuclear export and translation. Using a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 2013